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Abstract 

The knowledge of the process of clotting of blood dates back to the period of Hippocrates and 

Aristotle. After many centuries of accumulation of knowledge, the theory of Macfarlane and Davies, 

which laid more importance on the protein coagulation factors in controlling the process of 

coagulation with cells only serving as substrates has been held as the most acceptable doctrine. The 

cascade model proposed by them consists of two different pathways ending in a common pathway, 

with less interaction between the two. The new model, called the cell-based model of coagulation, 

proposes highly interconnected reactions occurring over three overlapping phases called initiation 

phase, amplification phase, and propagation phase, with cells playing central and controlling role over 

the protein coagulation factors. 
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Introduction  

Hemostasis is the physiological process that 

evolved to prevent blood loss due to injury, thus 

protecting the organism from potential death. It 

constitutes a small part of the bigger process that 

sustains life, the homeostasis, which helps to 

maintain the constancy of the internal 

environment despite continuous changes inflicted 

upon it. Hemostasis, which starts immediately 

after injury, is not simply concerned with the 

prevention of blood loss, it has other roles like, 

prevention of redundant clotting in normal 

tissues and lysis of clot to restore blood flow to 

the occluded tissue, end up as an overlapping 
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phase with the repair of the injured tissue [1]. So 

the hemostatic process occurs spanning over 

days to weeks to accomplish its goal. Three 

sequential processes are involved in this tightly 

regulated and balanced process. They are 

primary hemostasis, secondary hemostasis, and 

tertiary hemostasis. The primary hemostasis 

starts with exposure of the subendothelial 

collagen to the von Willebrand factor (vWF) and 

platelets to form loose, unstable platelet plug 

over the injured site [2]. In secondary 

hemostasis, enzymatic activation of a cascade of 

reaction causes the formation of active clotting 

factors from inactive clotting factors happens 

over the activated platelets and injured 

endothelium, forming fibrin meshwork that 

entraps RBCs and WBCs, strengthening the 

loose, unstable platelet plug formed during the 

primary hemostasis [3]. The platelet plug is 

converted into a definitive clot during secondary 

hemostasis. Tertiary hemostasis activates the 

fibrinolytic system to lyse the clot [4] so that the 

normal architecture of the endothelium is 

restored and occluded vessel lumen is re-

canalized to allow normal circulation to resume 

through the affected tissues. In this review 

article, the authors discuss the timeline of the 

development of theories of coagulation, the 

widely accepted cascade model of coagulation, 

some of its lacunas, and the emerging concept of 

cell-based coagulation.   

 

Historical perspective 

The notion that blood becomes solidified when it 

flows out of blood vessels was observed way 

back during the periods of Hippocrates, Aristotle, 

Celsius, and Galen. Though they made detailed 

observations of various internal and external 

bleeding tendencies, they could only conjecture 

that contact of blood with atmospheric air is the 

reason for bleeding to stop [5]. This theory was 

in vogue until two thousand years later, in the 

early 1720s, when a French surgeon, Jean-Louis 

Petit, made the critical observation that bleeding 

from the amputated limb was arrested due to 

small clots in the damaged blood vessels, 

associating for the first time in the history of 

medicine the relation between blood coagulation 

and hemostasis
 
[6]. Momentum was gained for 

the concept of the importance of blood 

coagulation for hemostasis when Swiss physician 

Friedrich Hopff, in the 1820s, made the seminal 

observation that hypercoagulability is associated 

with a bleeding disorder, when he studied males 

with a familial bleeding disorder, now 

recognized as hemophilia, an X-chromosome 

linked bleeding disorder [5]. In 1882, Giulio 

Bizzozero, an Italian professor of general 

pathology, identified platelets as new particles 

apart from RBCs and WBCs in the blood that 

played a similar role in hemostasis as well as 

thrombosis [7]. During the nineteenth century, 

the inter-relationship between plasma clotting 

factors, platelets, and endothelium was brought 

out by German pathologist, Rudolph Virchow in 

1856, when he proved that clots in the veins of 

the legs travelled to the lungs and caused 

pulmonary embolism and clots form whenever 

there is disturbance exist in the form of 

hypercoagulability, stasis, and injury to the 

endothelium, commonly referred to as Virchow‟s 

triad [8]. In 1905, Paul Oskar Morawitz, a 

German Internist and Physiologist, described 

four coagulation factors viz fibrinogen (I), 

prothrombin (II), thrombokinase (III) and 

calcium (IV) involved in the process of clotting 

of blood. He proposed that prothrombin is 

converted into thrombin by thrombokinase in the 

presence of calcium and the formed thrombin 

converted fibrinogen into fibrin enabling the 

formation of fibrin clot [9]. The understanding 

biochemical process of blood coagulation started 

when Paul Owren, a Norwegian physician, 

studied a woman whose bleeding diathesis could 

not be explained by the four-factor concept of 

blood coagulation, in 1947 [10]. Following his 

discovery, many coagulation factors were 

discovered between the period of 1940s and 

1950s in various parts of the world and an 

international committee was formed in 1954 to 

establish a common nomenclature for the new 

clotting factors to avoid misunderstanding of 

results of a blood test of bleeding disorders. The 

international committee which met in Rome, in 

1958, agreed to use Roman numerals for 
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identifying various clotting factors and the 

numerals given to the factors were according to 

the order of their discovery and not related to 

their level of importance in the clotting cascade. 

The detailed steps of coagulation were described 

as a series of reaction in which activation of one 

clotting factor leads to the activation of next one 

in the series and so on until thrombin is formed, 

by two independent groups of biochemists in 

1960s and one group headed by Macfarlane 

proposed the cascade model of blood coagulation 

in the journal Nature in the year 1964, and 

another group lead by Davie and Ratnoff 

advanced the waterfall model of blood 

coagulation in the journal Science in the same 

year [11, 12]. 

 

Figure - 1: Cascade model of blood coagulation depicted with an intrinsic pathway, extrinsic pathway 

and common pathways [30] - diagram redrawn from the source 

 
 

The traditional coagulation cascade model 

This model suggested that blood coagulation is 

initiated either intrinsically when blood is 

exposed to activated contact factor in the blood, 

or extrinsically when tissue factor released from 

the injured tissue initiates the process [13, 14]. 

Both pathways culminate with the production of 

a prothrombin activator, which starts the 

common pathway and finally ends with the 

production of fibrin meshwork [15]. The intrinsic 

pathway is initiated when factor XII comes in 

contact with a negatively charged surface like 

glass or membrane of the activated platelets, 

which converts factor XII into XIIa [16, 17] („a‟ 

behind the Roman numeral indicates activated 

form of the clotting factor). A protein called 

High molecular weight kininogen (HMWK) acts 

as a cofactor and helps factor XII to get anchored 

to the charged surface of platelets [18-20]. The 

activation of factor XII in this way is slow in 

reaction. But another cofactor called kallikrein, 

formed from prekallikrein by the action of XIIa, 

once formed activates the further conversion of 

factor XII into XIIa through positive feedback 

mechanism [21, 22, 23-26], resulting in an 

explosive release of enormous quantities of XIIa 
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into the blood. The next in series in the cascade, 

factor XI is converted into factor XIa which in 

turn converts factor IX into IXa. This activated 

factor (IXa), with the help of another two 

downstream factors, thrombin, and Xa, activate 

factor VIII to form VIIa. A trimolecular complex 

called Tenase is formed when factor IXa 

combines with VIIa in the presence of calcium 

and phospholipid. This enzyme complex 

converts factor X to Xa. The extrinsic pathway 

involves the interaction of between tissue factor 

(also called as factor III or tissue thromboplastin) 

and factor VII [27, 28]. The tissue factor is 

constitutively expressed as an integral membrane 

protein in the nonvascular tissues, functions as a 

receptor to the plasma protein factor VII [29, 30]. 

Any tissue injury exposes factor VII to tissue 

factor, which converts it to factor VIIa. Once 

activated, the factor VIIa forms a complex with 

tissue factor (similar to Tenase complex of the 

intrinsic pathway) that activates factor X to 

factor Xa (Figure – 1).  

 

Once factor Xa is formed, either through an 

intrinsic or extrinsic pathway or both, common 

pathway proceeds to form Prothrombinase 

complex which is an enzyme complex formed 

when factor Xa combines with factor Va in the 

presence of tissue phospholipid and calcium [31, 

32]. This complex converts prothrombin to 

thrombin which in turn converts a soluble plasma 

protein, fibrinogen to fibrin monomer which is 

still soluble. The monomers polymerize to form 

long chains of fibrin thread. These fibrin threads 

are interlinked by covalent cross-linking by 

factor XIIIa, which is formed from factor XIII by 

the action of thrombin. The cross-linked 

polymers of fibrin thread form a meshwork 

called stable fibrin which is insoluble in the 

plasma [32].  For diagnosing bleeding disorders 

due to intrinsic pathway abnormalities, activated 

partial thromboplastin time (aPTT) is used [33]. 

For diagnosing bleeding disorders due to 

extrinsic pathway abnormalities, prothrombin 

time (PT) is used [33]. For diagnosing bleeding 

disorders due to common pathway abnormalities, 

both activated partial thromboplastin time and 

prothrombin time can be used [34]. 

Constraints in traditional coagulation 

cascade model 

The traditional model is depicted as two separate 

independent pathways that can function 

independently of each other with very little 

interaction between them which is not true in 

vivo. The scope for the interaction of coagulation 

factors with cells like endothelial cells and 

platelets is highly sabotaged. Segregating the 

pathways involved in coagulation helps us in 

identifying the deficient clotting factors when 

laboratory tests are done to assess the risk of 

bleeding or thrombosis, as aPTT has done for 

diagnosing intrinsic pathway disorders and PT 

done for extrinsic pathway disorders. Still, the 

environment in which blood clotting occurs 

inside the body is not replicated in the laboratory 

domain. For example, the clotting mechanism is 

a balanced activity between procoagulants and 

anticoagulants inside the body. When it comes to 

testing in the laboratory, though the platelet-poor 

plasma still contains both procoagulants and 

anticoagulants, the role of thrombomodulin in 

activating the anticoagulants is missed as 

endothelial cells (which is the source of 

thrombomodulin) are not part of the laboratory 

environment [35]. Hence the true risk of bleeding 

or thrombosis is not correctly reflected in these 

laboratory tests if there are changes in the 

endogenous anticoagulant system. Deficiency of 

clotting factors such as factor XII, high 

molecular weight kininogen, and prekallikrein 

that produce a prolonged aPTT result is not 

associated with any bleeding tendency in the 

concerned persons [36]. The normal extrinsic and 

common pathways in people with isolated 

deficiency of factor VIII (hemophilia A) or factor 

IX (hemophilia B) do not compensate for the 

deficient clotting factors and achieve hemostasis, 

but manifests as severe bleeding disorders [37]. 

Deficiency of factor XI is not manifested 

uniformly as bleeding tendency as some people 

remain normal despite abnormal aPTT results 

[38]. Even though factor XII is not normally 

present in some mammalian species like whales 

and dolphins, they do not suffer from any 

bleeding disorder [39]. Thus the above-
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mentioned discrepancies lead the researchers to 

conclude that the blood clotting mechanism is 

less likely to work as separate pathways in vivo 

[40-44]. 

 

Cell-based model of coagulation 

The cell-based model of coagulation was initially 

proposed by Hoffman, Monroe [9], and later 

expanded by K.G. Mann, S. Buenas [31]. The 

modern view of coagulation lays more stress on 

the process of coagulation over the surface of 

cells involved in the process [45]. The process of 

coagulation is portrayed as three overlapping 

phases such as the Initiation phase, the 

Amplification phase, and the Propagation phase 

[46] in the cell-based model in contrast to two 

separate and less interacting intrinsic and 

extrinsic pathways in the traditional model. The 

tissue factor (TF) bearing cells and platelets are 

the two pivotal cell-related components whereas 

thrombin and fibrinogen are the clotting proteins 

that interact with the cellular components to 

accomplish hemostasis [47]. Recent studies have 

shown the importance of the third cellular 

elements in the hemostasis, the RBCs, which 

form an impermeable complex structure with 

platelets and fibrin in the clot [48, 49] so 

maintaining a critical level of hematocrit gives a 

potential survival advantage in the face of life-

threatening hemorrhage [50]. 

 

The initiation phase 

When blood is exposed to cells that bear tissue 

factor (TF) on their membrane, the process of 

hemostasis is set in motion at the site of injury. 

The TF is commonly present in the smooth 

muscle cells and fibroblasts of the subendothelial 

layer and seen in endothelial cells, macrophages, 

and circulating platelets only during 

inflammatory conditions [51]. The TF acts as a 

receptor as well as a cofactor for factor VII. The 

exact mechanism of activation of factor VII upon 

binding with TF is not yet clear. The complex 

TF/VIIa, called extrinsic Tenase complex on the 

cells activate factor X and IX (Figure - 2), both 

of which have an independent and specific role 

in the initiation of blood clotting [52]. The factor 

Xa forms a complex with Va on the TF-bearing 

cells, called Prothrombinase complex which 

converts prothrombin to thrombin over the TF-

bearing cells whereas the factor IXa, diffuse to 

nearby activated platelets and bind with the 

surface receptor [53] and interact with the 

cofactor VIIa present on the activated platelets. 

This complex can directly activate factor X to Xa 

that breakdown prothrombin to thrombin over 

the activated platelets. The amount of thrombin 

formed during the initiation phase, called 

thrombin spark [54], is very less as the activity of 

factor Xa is inhibited by the endothelium-derived 

components like the Tissue factor pathway 

inhibitor (TFPI) and Antithrombin III (ATIII)
 

[9]. 

 

The amplification phase 

Intrinsic Tenase complex is formed when factor 

IXa combines with factor VIIa on the membrane 

of the activated platelets (sometimes on the 

endothelial cells and microparticles also) in the 

presence of calcium [28]. This intrinsic Tenase 

complex is very potent in producing the required 

amount of factor Xa needed to sustain hemostasis 

during this amplification phase. The amount of 

factor Xa produced by the intrinsic Tenase 

complex is 50 to 100 times greater than that is 

produced by the extrinsic Tenase complex 

produced during the initiation phase [55]. Not 

only the intrinsic Tenase complex potency is 

enhanced, but the potency of Prothrombinase 

complex is also augmented due to their co-

localization on the phospholipid membrane of 

the activated cells in the presence of calcium 

[56]. The Prothrombinase complex alone by 

itself has 300,000 times higher capacity to 

generate thrombin when compared to factor Xa 

[57]. The ability of the platelet to bind both the 

Tenase complex and Prothrombinase complex 

enhances its ability to generate more thrombin 

[58-60]. Thrombin is formed rapidly within a 

short period to form a stable clot due to the 

positive feedback effect of these activated 

factors. Thrombin increases the expression of the 

factor Va on the platelet membrane when it binds 

and activates through its receptor GpIb on the 
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platelets which also results in degranulation of α-

granules [41]. Platelet aggregation is potentiated 

by the thrombin when it acts through GpIb/IIIa 

receptors. Thrombin increases the levels of factor 

VIIa and factor XIa, by breaking VIIa:vWF 

complex and liberating the factor VIIa free and 

converting inactive factor XI to its active form 

[44]. The Tenase and Prothrombinase complexes 

acting cooperatively on the membrane of the 

platelets during this phase produce an enormous 

amount of thrombin, called “burst of thrombin”. 

 

Figure - 2: The Initiation phase on the TF bearing cell (fibroblast), Amplification phase on the 

platelets, and the Propagation phase on the activated platelets of Cell-based model of coagulation. 

(Adapted from Maureen Hoffman, Dougald M. Monroe [9]. 

 
 

The propagation phase 

The “burst of thrombin” that started in the 

amplification phase should be judiciously 

channelized to effectively form the needed 

quantity of fibrin in the propagation phase to 

produce hemostasis. Platelets play a major role in 

localizing the burst of thrombin formation at the 

site of injury as they adhere to the exposed TF. 

Also, plasma factors like vWF and thrombin, 

platelet factor like its receptor, and vessel wall 

factor-like collagen assist platelets to get 

localized to the site of injury [23]. The stage is 

set utterly when intrinsic Tenase complex and 

Prothrombinase complex are available at the 

same site in the presence of cofactors like 

calcium and phospholipid membrane over the 

activated platelets. The burst of thrombin formed 

convert large quantities of fibrinogen to fibrin 

monomers that polymerize to form a gel of fibrin 

threads. Factor XIIIa formed by thrombin, links 

the fibrin polymer threads covalently to form 

stable fibrin clot
 
[31]. The freshly formed fibrin 

clot is protected from the plasmin mediated 

fibrinolysis by the action of thrombin. Thrombin 

activates thrombin-activatable fibrinolysis 

inhibitor (TAFI) that removes lysine residues 
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from the fibrin clot so that the binding site of the 

plasmin is removed, thwarting clot lysis [54, 55]. 

 

Conclusion 

The current understanding of the process of 

hemostasis has shifted our focus from the factor 

components of hemostasis to cellular 

components. The queries that prevailed in the 

cascade mode were answered by this cell-based 

model. This comprehensive understanding of the 

intricate and interdependent processes of blood 

coagulation will help us in strengthening our 

insights into the diagnosis of bleeding disorders 

with more accurate diagnostic tools and targeted 

therapeutic interventions. 
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